The Modified Negative Decision Number in Graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Modified Negative Decision Number in Graphs

A mapping x : V → {−1, 1} is called negative if∑u∈N v x u ≤ 1 for every v ∈ V. The maximum of the values of ∑ v∈V x v taken over all negative mappings x, is called the modified negative decision number and is denoted by β′ D G . In this paper, several sharp upper bounds of this number for a general graph are presented. Exact values of these numbers for cycles, paths, cliques and bicliques are f...

متن کامل

The negative decision number in graphs

A bad function is a function f : V (G) → {−1, 1} satisfying ∑ v∈N(v) f(v) ≤ 1 for every v ∈ V (G), where N(v) = {u ∈ V (G) | uv ∈ E(G)}. The maximum of the values of ∑ v∈V (G) f(v), taken over all bad functions f, is called the negative decision number and is denoted by βD(G). In this paper, several sharp upper bounds of this number for general graphs are presented.

متن کامل

Computational complexity of the negative decision number of graphs

Let G = (V,E) be a graph. A function f : V → {−1, 1} is called a bad function of G if ∑ u∈NG(v) f(u) ≤ 1 for each v ∈ V , where NG(v) is the set of neighbors of v in G. The negative decision number of G, introduced by Wang, is the maximum value of ∑ v∈V f(v) taken over all bad functions of G. In this paper, we comprehensively study the negative decision number from algorithmic, complexity, and ...

متن کامل

Some sharp bounds on the negative decision number of graphs

Let G = (V,E) be a graph. A function f : V → {−1, 1} is called a bad function of G if ∑ u∈NG(v) f(u) ≤ 1 for all v ∈ V , where NG(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑ v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of...

متن کامل

On the Decision Number of Graphs

Let G be a graph. A good function is a function f : V (G)→ {−1, 1}, satisfying f(N(v)) ≥ 1, for each v ∈ V (G), where N(v) = {u ∈ V (G) |uv ∈ E(G)} and f(S) = ∑ u∈S f(u) for every S ⊆ V (G). For every cubic graph G of order n, we prove that γ(G) ≤ 5n 7 and show that this inequality is sharp. A function f : V (G) → {−1, 1} is called a nice function, if f(N [v]) ≤ 1, for each v ∈ V (G), where N [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2011

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2011/135481